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PART-A

Answer ALL questions





(10x2=20 marks)

1. What is the principal value of the complex number z=1+i?

2. Write down the equation of the circle in the complex plane centered at ‘a’ with radius ‘r’.

3. Evaluate 
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4. What is a single valued function in a complex region.

5. Find ‘c’ if 
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6. Write down a homogeneous first order partial differential equation.

7. Define the Fourier sine transform of a function f(x).

8. If 
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is the Fourier transform of f(x), what is the Fourier transform of 
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9. Define the shift operator on f(x) by ‘h’.

10. Write down the Simpson’s 1/3 rule for integration.

PART-B

Answer any FOUR questions




(4x71/2=30 marks)

11. Determine the roots of 
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 and locate it in the complex plane.

12. If ‘C’ is a line segment from -1-i to 1+i, evaluate 
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13. Derive the partial differential equation satisfied by a vibrating elastic string subject to a     tension ‘T’.

14. Obtain the Lagrange’s interpolation formula for following table:
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15. Find the Fourier sine transform of exp(-at).

PART-C

Answer any FOUR questions




(4x121/2=50 marks)

16. a) Derive the Cauchy Riemann equation for a function to be analytic.
(5m)

b) Show that the function 
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is harmonic and hence

construct the corresponding analytic function.



(71/2m)

17. a) State and prove Cauchy’s integral theorem.



(5m)

b) Verify the Cauchy’s integral theorem for the integral of 
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taken over the boundary of the rectangle with vertices -1, 1, 1+i and -1 +i in the counter clockwise sense.









(71/2m)

18. Solve the heat equation 
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, subject to the conditions u(x=0,t)=0 and u(x=L,t)=0       for all ‘t’.









19. a) State and prove the convolution theorem for Fourier Transforms. 
(2+3=5m)

b) Find the Fourier transform of the function f(x) defined in the interval –L to +L, as 





[image: image13.wmf]()1

()0

fxforLxL

fxforxLandxL

=-<<+

=<->+




(71/2m)

20. Given the following population data, use Newton’s interpolation formula to find the population for the years 1915 and 1929

(Year, Population (in Thousands)): (1911, 12) (1921, 15) (1931, 20), (1941, 28).
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